3.418 \(\int \frac {\sin ^4(e+f x)}{\sqrt {b \sec (e+f x)}} \, dx\)

Optimal. Leaf size=95 \[ -\frac {2 b \sin ^3(e+f x)}{9 f (b \sec (e+f x))^{3/2}}-\frac {4 b \sin (e+f x)}{15 f (b \sec (e+f x))^{3/2}}+\frac {8 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{15 f \sqrt {\cos (e+f x)} \sqrt {b \sec (e+f x)}} \]

[Out]

-4/15*b*sin(f*x+e)/f/(b*sec(f*x+e))^(3/2)-2/9*b*sin(f*x+e)^3/f/(b*sec(f*x+e))^(3/2)+8/15*(cos(1/2*f*x+1/2*e)^2
)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))/f/cos(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2627, 3771, 2639} \[ -\frac {2 b \sin ^3(e+f x)}{9 f (b \sec (e+f x))^{3/2}}-\frac {4 b \sin (e+f x)}{15 f (b \sec (e+f x))^{3/2}}+\frac {8 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{15 f \sqrt {\cos (e+f x)} \sqrt {b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^4/Sqrt[b*Sec[e + f*x]],x]

[Out]

(8*EllipticE[(e + f*x)/2, 2])/(15*f*Sqrt[Cos[e + f*x]]*Sqrt[b*Sec[e + f*x]]) - (4*b*Sin[e + f*x])/(15*f*(b*Sec
[e + f*x])^(3/2)) - (2*b*Sin[e + f*x]^3)/(9*f*(b*Sec[e + f*x])^(3/2))

Rule 2627

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(b*(a*Csc[e
+ f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1))/(a*f*(m + n)), x] + Dist[(m + 1)/(a^2*(m + n)), Int[(a*Csc[e + f*x])
^(m + 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n, 0] && IntegersQ[2
*m, 2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {\sin ^4(e+f x)}{\sqrt {b \sec (e+f x)}} \, dx &=-\frac {2 b \sin ^3(e+f x)}{9 f (b \sec (e+f x))^{3/2}}+\frac {2}{3} \int \frac {\sin ^2(e+f x)}{\sqrt {b \sec (e+f x)}} \, dx\\ &=-\frac {4 b \sin (e+f x)}{15 f (b \sec (e+f x))^{3/2}}-\frac {2 b \sin ^3(e+f x)}{9 f (b \sec (e+f x))^{3/2}}+\frac {4}{15} \int \frac {1}{\sqrt {b \sec (e+f x)}} \, dx\\ &=-\frac {4 b \sin (e+f x)}{15 f (b \sec (e+f x))^{3/2}}-\frac {2 b \sin ^3(e+f x)}{9 f (b \sec (e+f x))^{3/2}}+\frac {4 \int \sqrt {\cos (e+f x)} \, dx}{15 \sqrt {\cos (e+f x)} \sqrt {b \sec (e+f x)}}\\ &=\frac {8 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{15 f \sqrt {\cos (e+f x)} \sqrt {b \sec (e+f x)}}-\frac {4 b \sin (e+f x)}{15 f (b \sec (e+f x))^{3/2}}-\frac {2 b \sin ^3(e+f x)}{9 f (b \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.33, size = 63, normalized size = 0.66 \[ \frac {-68 \sin (2 (e+f x))+10 \sin (4 (e+f x))+\frac {192 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{\sqrt {\cos (e+f x)}}}{360 f \sqrt {b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^4/Sqrt[b*Sec[e + f*x]],x]

[Out]

((192*EllipticE[(e + f*x)/2, 2])/Sqrt[Cos[e + f*x]] - 68*Sin[2*(e + f*x)] + 10*Sin[4*(e + f*x)])/(360*f*Sqrt[b
*Sec[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.79, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (\cos \left (f x + e\right )^{4} - 2 \, \cos \left (f x + e\right )^{2} + 1\right )} \sqrt {b \sec \left (f x + e\right )}}{b \sec \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)*sqrt(b*sec(f*x + e))/(b*sec(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^4/sqrt(b*sec(f*x + e)), x)

________________________________________________________________________________________

maple [C]  time = 0.20, size = 328, normalized size = 3.45 \[ -\frac {2 \left (5 \left (\cos ^{6}\left (f x +e \right )\right )+12 i \cos \left (f x +e \right ) \sin \left (f x +e \right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right )-12 i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+12 i \sin \left (f x +e \right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right )-12 i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right ) \sin \left (f x +e \right )-16 \left (\cos ^{4}\left (f x +e \right )\right )+23 \left (\cos ^{2}\left (f x +e \right )\right )-12 \cos \left (f x +e \right )\right ) \sqrt {\frac {b}{\cos \left (f x +e \right )}}}{45 f \sin \left (f x +e \right ) b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^4/(b*sec(f*x+e))^(1/2),x)

[Out]

-2/45/f*(5*cos(f*x+e)^6+12*I*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*cos(f*x+e)*sin(f*x+e)*(1/(cos(f*x+e)+1)
)^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-12*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*Elli
pticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)*cos(f*x+e)+12*I*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*sin
(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-12*I*sin(f*x+e)*EllipticF(I*(-1+cos(f*x+e))
/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-16*cos(f*x+e)^4+23*cos(f*x+e)^2-12*c
os(f*x+e))*(b/cos(f*x+e))^(1/2)/sin(f*x+e)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4/(b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^4/sqrt(b*sec(f*x + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\sin \left (e+f\,x\right )}^4}{\sqrt {\frac {b}{\cos \left (e+f\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)^4/(b/cos(e + f*x))^(1/2),x)

[Out]

int(sin(e + f*x)^4/(b/cos(e + f*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{4}{\left (e + f x \right )}}{\sqrt {b \sec {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**4/(b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sin(e + f*x)**4/sqrt(b*sec(e + f*x)), x)

________________________________________________________________________________________